公司新闻当前位置:首页 > 新闻资讯 > 公司新闻

焊接机械手及焊接专机的发展趋势

时间:2018/1/1 20:25:00来源:浏览次数:

焊接机械手及焊接专机的发展趋势



目前应用广泛的焊接机械手及焊接专机大多属于示教再现型机器人,操作者通过示教盒在直角坐标系和极坐标系中移动机器人各关节,使焊矩沿焊接轨迹运动,在焊矩路径上记录示教的位置、焊矩姿态、运动参数和工艺参数,并生成一个连续执行全部操作的示教程序。此类机器人不适合在太空、深海、放射性环境等特殊环境下自主作业,不具备对工件装配误差、焊接过程中的热变形等环境和对工作对象变化自适应能力。新一代的具有视觉传感功能的,能够自动制订运动轨迹、焊矩姿态和焊矩参数的智能机器人成为未来的发展方向。


焊缝空间位置的检测与焊矩姿态的规划是影响机器人全位置自动焊接质量的重要因素。在研制开发成功的焊矩位置和焊矩姿态自动识别调整系统中,利用分形理论有效地排除了飞溅、锈斑等因素的干扰,结合数学物理模型,较经典的边缘检测算法在速度和精度上都有了很大的提高,实现了对任意焊缝的三维空间描述。同时,借助于大量实验得出不同焊矩姿态对应的焊接规范数据库,使得机器人在任意空间位置焊接时,保持最优的焊矩姿态及焊矩规范参数,保证全位置焊接中焊缝成形的稳定、美观(如图5.1)

对于诸如马鞍型焊缝(如图5.2)的复杂工件的机器人焊接,焊缝形状、焊接位置和各示教点的过渡情况对焊接质量有很大的影响,必须保证运动轨迹、焊枪姿态和各点焊接参数的合理匹配。传统的在线示教编程和机器人语言编程技术以无法很好的满足实际需要,因而离线编程技术的研究对弧焊机器人的推广应用具有更重要的意义。所谓的机器人离线编程就是通过建立机器人及其环境物的几何模型,以机器人编程语言描述机器人任务,通过推理获取机器人作业所需的各种参数,然后对编程的结果进行三维图形动画仿真,离线调试机器人程序的正确性,最后生成机器人控制所需的各种实际控制参数。针对弧焊机器人,在CAD和MARC-WORLD的基础上进行二次开发,对工件特征提取及几何建模、空间焊缝姿态规划、焊接参数规划、机器人程序自动生产、机器人图形仿真和通讯进行了初步研究。设计的弧焊机器人离线编程系统,采用视觉方法进行实时焊缝跟踪,既保证了离线编程结果的可用性,同时可用多边形逼近的方法来简化工件的模型,从而降低了对工件坡口和装配精度的要求,改善了弧焊机器人的易用性和实用性。

建立了一种由建模器、任务编辑器、任务规划器和机器人运动仿真等基本模块组成的弧焊机器人任务级离线编程系统,提高了离线编程的工作效率。建立了一个具有特征建模和无碰撞路径规划功能的机器人弧焊CAD/CAM系统,可以实现几何造型、焊接参数规划、焊接路径规划、图形仿真、约束检查、程序编辑和传感修正等功能,显著的提高了编程效率和编程质量。

当前焊接机械手及焊接专机的应用多局限于结构化环境中,而在一些非结构化环境如大型球罐制造、长输油管道焊接及水电站水轮机叶片修复等野外作业中,传统的固定式机器人已无法满足要求,开发适合于特殊非结构化工作环境的特种机器人成为机器人工业应用研究的重要发展方向。图3给出的是清华大学和北京石油化工学院合作研制成功一种新型智能全位置球罐焊接机器人。该机器人主要由磁吸式全位置行走机构、CCD光电轨迹跟踪系统与接触式高度跟踪系统、焊枪摆动机构、微机智能控制系统等组成。机器人自重20Kg,载重50-70Kg;有四个自由度,可以在球罐表面的各种空间位置完成前进、后退、拐弯等运行方式;视觉系统检测精度可达±0.5mm;机器人焊缝跟踪精度可达±0.5mm,运行速度为0.5-5m/min。清华大学与中石油管道局合作开发的长输管线环缝全位置自动焊接机器人,该机器人通过定位轨道沿环缝运动,除完成一般的焊接作业外,还具有焊接规划参数及其相关控制参数的离线编程和焊接过程监测等功能。


与普通的搬运、点焊、装配等定点操作的焊接机械手及焊接专机相比,弧焊机器人对末端执行器(焊枪)的运动轨迹要求有严格的精度,空间位置焊接时的焊枪姿态及焊接规范在整个轨迹上都需要连续调整。为此,焊接机器人应该有配套的视觉系统、专家系统等控制单元,来克服因装配、变形等因素引起的位置和精度误差,以实现真正的高质量的自动化焊接生产。在焊接自动化的发展过程中,还应该清醒地认识到:实现焊接机器人化的前提条件是下料、工装等配套工序的作业精度必须严格控制在允许的范围内,至少目前机器人作业还难以达到或超过高级焊工的水平,各种研究和开发工作的开展正是为了努力实现这一目标。


下一篇:

没有了!